Contents

Foreword

Preface

1. Introduction to post-tensioning concrete bridges

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Durability experiences and case study of post-tensioned bridges</td>
<td></td>
</tr>
<tr>
<td>1.2.1 PT bridges in France</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 PT bridges in the U.K.</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3 PT bridges in the U.S.A.</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4 PT bridges in Norway</td>
<td>10</td>
</tr>
<tr>
<td>1.2.5 PT bridges in Brazil</td>
<td>11</td>
</tr>
<tr>
<td>1.2.6 PT bridges in Germany</td>
<td>12</td>
</tr>
<tr>
<td>1.2.7 PT bridges in Japan</td>
<td>14</td>
</tr>
<tr>
<td>1.2.8 PT bridges in Switzerland</td>
<td>17</td>
</tr>
<tr>
<td>1.2.9 PT bridges in Slovakia</td>
<td>18</td>
</tr>
<tr>
<td>1.3 References</td>
<td>20</td>
</tr>
</tbody>
</table>

2. Review of current practice of bridge management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Structural inspections</td>
<td>22</td>
</tr>
<tr>
<td>2.2 Numerical strength assessment</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Monitoring and management</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Future developments</td>
<td>24</td>
</tr>
<tr>
<td>2.5 References</td>
<td>25</td>
</tr>
</tbody>
</table>

3. Risk review, risk assessment and risk management for PT concrete bridges

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>3.2 UK management process</td>
<td>27</td>
</tr>
<tr>
<td>3.2.1 Risk review</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2 Structure risk assessment</td>
<td>29</td>
</tr>
<tr>
<td>3.2.3 Risk management</td>
<td>32</td>
</tr>
<tr>
<td>3.2.4 Prioritisation of inspections and repair works</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Risk analysis process in France</td>
<td>34</td>
</tr>
<tr>
<td>3.3.1 Sétra guide to risk analysis</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2 Evaluation of hazard, vulnerability and issues</td>
<td>35</td>
</tr>
<tr>
<td>3.3.3 Some details on this risk analysis</td>
<td>37</td>
</tr>
<tr>
<td>3.3.2. Details on the assessment of the robustness/vulnerability</td>
<td>38</td>
</tr>
</tbody>
</table>
3.4 Conclusion 38
3.5 References 39

4. Inspection 40

4.1 General 40
 4.1.1 Definition and objectives of inspection 40
 4.1.2 Preparation of inspection 40
 4.1.3 Inspection types 41
 4.1.4 Qualification of inspection personnel 41

4.2 Points of attention in inspection 41
 4.2.1 Cracking 41
 4.2.2 Water management systems 45
 4.2.3 Deflections 45
 4.2.4 Concrete spalling 46
 4.2.5 Construction joints 46
 4.2.6 Bearings 46
 4.2.7 External tendons 47

4.3 Record of inspection 47
4.4 References 47

5. Investigations 48

5.1 Introduction 48

5.2 Non-destructive testing methods for the diagnosis of prestressing 49
 5.2.1 Usual or current techniques 49
 5.2.2 Monitoring of prestressing tendons 57
 5.2.3 Techniques under development 58

5.3 Intrusive or destructive methods 61
 5.3.1 Drilling holes to tendons 61
 5.3.2 Cutting access ports 62
 5.3.3 Grout cap removal 62
 5.3.4 Inspection of the tendon and grout condition, and collection of samples 62
 5.3.5 Measure of void volumes 64
 5.3.6 Laboratory investigations: metallography on steels mineralogical analysis of grout 64
 5.3.7 Core drills and percussion drills to evaluate concrete quality of the structure, carbonation front, chloride ingress 64
5.4 Determination of in-situ mechanical and structural characteristics
 5.4.1 Measurement of prestress forces
 5.4.2 Measurement of concrete stresses
 5.4.3 Evaluation of the structural behaviour
5.5 Evaluation of the structural behaviour
 5.5.1 Analysis and verification of the design
 5.5.2 Proof load
5.6 Conclusion
5.7 References

6. Intervention
 6.1 Introduction
 6.2 Detailed structural assessment
 6.3 Monitoring
 6.4 Remove load
 6.5 Securing the work area
 6.6 Repair Methods
 6.6.1 Void filling
 6.6.2 Duct repair
 6.6.3 Repair of inspection windows internal PT
 6.6.4 Corrosion inhibitors
 6.7 Replacing external tendons
 6.8 Strengthening methods
 6.8.1 Additional prestressing tendons
 6.9 Rebuild
 6.10 References

Glossary
Appendixes

Appendix A - Tables and practical application of chapter 3
 Appendix A.1 - A bridge specific example of a structure risk assessment
 Appendix A.2 - Two examples of risk ratings
 Appendix A.3 - Scores associated with general design factors as shown in reference 3-2 Table 6
 Appendix A.4 - Scores associated with material factors as shown in reference 3-2 Table 7
 Appendix A.5 - Example of a risk analysis for 15 bridges in accordance with the Sétra methodology as reference 3-2
Appendix B - Repair project reports
 Appendix B.1 Saint-Cloud Viaduct, Saint-Cloud - France, 2009
 Appendix B.2 Strengthening of the Ružín bridge, Slovakia, 2017
 Appendix B.3 A52 Clifton Bridge, Nottingham, UK, 2021
 Appendix B.4 Agudim Viaduct, Leiria, Portugal, 2019
 Appendix B.5 Pykes Creek, Victoria, Australia, 2018

Appendix C - Typical defect of bridges related to prestressing tendons
 Appendix C.1 Randomness of corrosion of tendons in beam and slab bridges (VIPP type)
 Appendix C.2 Failure of external grouted tendons due to the presence of a white paste inside the duct.
 Appendix C.3 Brittle failure of prestressing wires caused by a susceptibility to stress cracking corrosion.

Appendix D - fib bulletins, which are at least partially dealing with some issues concerning the management of post-tensioned bridges.