Motivation
Commission 1 (COM1) seeks to encourage and develop good practices in the design of concrete structures, with a special emphasis on innovation and imagination. Its work should complement national, regional (e.g. Eurocodes), as well as international codes (e.g. the fib Model Code for Concrete Structures 2010), which in principle give only design specifications.
Scope and objective of technical work
COM1 examines all aspects of specific types of structures, from their structural and architectural design to construction and service life.
COM1 aims to provide state-of-the-art documentation and recommendations for all types of structures where structural concrete plays a significant role. This will apply in priority to fields of development where data and guidelines are not yet available, either new types of structures or implementation of new developments of materials, or a combination of both. COM1 endeavours to promote practices leading to sound, economical, durable and aesthetic design, with special attention to sustainable development principles.
-
TG1.1 - Bridges
Task Group 1.1 (TG1.1) is dedicated to bridge engineering. All types of bridges are concerned, with a predominance of concrete bridges. Theoretical and practical aspects are treated, as well as construction techniques. Innovations and recent developments but also established good practices are highlighted. Emphasis is placed on bridge architecture and design.
The general objective of the task group is to provide design guides, recommendations, practical design rules and technical advice on bridge design and related construction techniques. Rules of good practice and recommendations for the correct use of materials and techniques are formulated.
-
WP1.1.1 - Bridges for high-speed trainsWorking Party 1.1.1 (WP 1.1.1) aims to provide guidance for designers of bridges for high speed trains, covering issues such as loads, dynamics, rail deck interaction, wind, slipstream forces, accidental situations, maintenance and inspection, etc. The document will be based on existing guidance edited by the German railway administration. International expertise will broaden the recommendations and bring them to an international level.
First name Last name Country Affiliation Thomas Fackler Germany Schlaich Bergermann und Partner GmbH Günter Seidl Germany SSF Ingenieure AG Patrice Schmitt France SNCF Steffen Marx Germany - David Fernández-Ordóñez Switzerland fib Miguel Angel Astiz Suarez Spain Carlos Fernandez Casado S. L. Juan Sobrino Spain Pedelta, S. L. Junling Sun China Sun Engineering Consultants Intl., Inc. -
WP1.1.3 - Integral bridgesThe scope of WP 1.1.3 is to prepare practical guidelines on semi-integral and integral bridges. The objective of these guidelines is to define the current best practical response to specific problems associated with semi-integral and integral bridges from an international perspective. It will be based on existing guidelines, results from scientific research and feedback from practical experience.
First name Last name Country Affiliation Murat Dicleli Turkey Middle East Technical University Philipp Wenger Germany schlaich bergermann partner Sergio Breña United States University of Massachusetts Amherst Philippe Jandin France CEREMA Rémi Havy France ARCADIS Peter Collin Sweden Luleå University of Technology Damien Champenoy France CEREMA João Almeida Portugal Instituto Superior Técnico Lisboa Michel Moussard France Consultant Anssi Laaksonen Finland Tampere University of Technology Steffen Marx Germany - Alejandro Pérez Caldentey Spain Universidad Politécnica de Madrid Alessandro Palermo New Zealand The University of Canterbury Walter Kaufmann Switzerland ETH Zürich David Fernández-Ordóñez Switzerland fib Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne) Susumu Inoue Japan Osaka Institute of Technology Marcos Sanchez Ireland ARUP Jessica Sandberg United Kingdom Atkins Sotiria Stefanidou Greece Aristote University of Thessaloniki Petr Tej Czech Republic Czech Technical University Max Herbers Germany University of Dresden Moustafa Al-Ani New Zealand - Bruno Briseghella China Fuzhou University Habib Tabatabai United States University of Wisconsin-Milwaukee Jerome Michel France Cerema -
WP1.1.4 - Light railway bridgesWhile road and railway bridges benefit from standards and extensive documentation often published by state agencies, it is not the case for lightweight railway bridges. This can be explained by the variety of systems ranging from LRT (Light Rail Transit) to MRT (Mass Rapid Transit) and the fact that these systems are mainly operating at a city or regional level.
However, from a bridge engineering perspective, common features, particular requirements and good practices for design and construction that specifically apply to these transportation modes can be identified.
The general objective of this working party is to provide a state-of-the-art report for the design of LRT and MRT bridges.
First name Last name Country Affiliation David Fernández-Ordóñez Switzerland fib Gopal Srinivasan United Kingdom Arup Sherif Ezzat Egypt econstruct Huy Lam France Systra Tatsuya Nihei Japan Railway Technical Research Institute Chiayu Chen Taiwan, Province of China TYLIN International Group -
WP1.1.5 - Management of of prestressed concrete bridgesOver recent years some significant work has gone into inspection and investigation of post-tensioned bridges around the world. This has led to an increase in understanding the methods of inspection to determine the condition of the prestressing tendons and the whole process to assess structural safety. Some bridges of this type have been repaired and others have been replaced. Long term management of such bridges is becoming important to bridge owners around the world and guidance is scarce.
The working party can collect the current state-of-the-art of such processes from the fib’s member countries and prepare a state-of-the-art report with guidance to assist the countries that are still to embark on inspecting their stock of such bridges.
First name Last name Country Affiliation Bruno Godart France - Gaute Nordbotten Norway Norwegian Public Roads Administration Tohru Makita Japan Central Nippon Expressway Company Limited Teddy Theryo United States BCC Engineering Jae-Yeol Cho Korea, Republic of Seoul National University David Fernández-Ordóñez Switzerland fib Peter Paulik Slovakia Slovak University of Technology in Bratislava Manuel Pipa Portugal LNEC Lisbon Chris Hendy United Kingdom Atkins Fernando Stucchi Brazil ABECE/EGT Piotr Gwoździewicz Poland Cracow University of Technology Milan Kalny Czech Republic Pontex s.r.o. Prague Edo Vonk Switzerland VSL International Sherif Ezzat Egypt econstruct Jeanette Hunter United Kingdom Ramboll UK Ltd -
WP1.1.6 - Design Loads for long span bridgesThe design of long span bridges goes beyond the application range of all the codes of practice and usual construction recommendations. While it is possible to use and extrapolate codes for the design of single elements, it is not the same for the initial definition of data, and especially to fix the loading scheme of the bridge which are not covered by codes.
The goal of the group is to establish a clear philosophy and some basic rules to fix the loading schemes of the bridge in relation to its span length and its typology.
First name Last name Country Affiliation David Fernández-Ordóñez Switzerland fib Thierry Delemont Switzerland T-ingenierie SA Michel Virlogeux France Virlogeux Consulting Matthieu Galland United Kingdom Arup Chan Park Korea, Republic of COWI Korea Hiroyuki Uchibori Japan Sumitomo Mitsui Construction Co., Ltd. Fangyin Zhang United States Thornton Tomasetti
First name Last name Country Affiliation Florent Imberty France Razel SA Guido Morgenthal Germany Bauhaus University Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd Peter Curran United Kingdom Ramboll UK Miguel Angel Astiz Suarez Spain Carlos Fernandez Casado S. L. Steffen Marx Germany - Mike Schlaich Germany TU Berlin David Fernández-Ordóñez Switzerland fib Thierry Delemont Switzerland T-ingenierie SA Juan Sobrino Spain Pedelta, S. L. -
-
TG1.2 - Concrete structures in marine environments
Well-designed, well-built concrete structures are particularly suited for the marine environment. Task Group 1.2 has so far focused on structures for oil and gas fields in hostile marine environments (fib Bulletin 50) and on concrete structures in marine environments in general (fib Bulletin 91). A special focus has been done on floating tube bridges to help the designers to consider this promising alternative (fib Bulletin 96).
Significant experience has been gained from the design and construction of offshore concrete structures of the world and concrete has shown the possibility to design durable structures also in aggressive marine environment.
The topic of durability is, nowadays, more and more important, especially considering the goals on sustainability that the community is required to reach. Durable, safe and sustainable floating concrete structures will provide an important alternative in a future with lack of space on land and new technological solutions, for example for renewable energy production, that are continuously approaching the market.
-
WP1.2.1 - Floating concrete structuresIn many cases, floating structures have some clear advantages compared to fixed structures. The motivation of the work in this WP is to demonstrate these advantages, and attempt to draw conclusions as to what applications are particularly promising.The objective of WP1.2.1 is to demonstrate the usefulness of concrete in a modern society where floating structures may be needed. It will identify and consider potential applications of marine floating concrete structures, and then make selections and go into more detail on how the selected applications can be made competitive.
First name Last name Country Affiliation Tor Ole Olsen Norway Olav Olsen a.s. Francisco Esteban Lefler Spain FCC Construction Harald Rogne Norway Olav Olsen Ove Tobias Gudmestad Norway University of Stavange Arnstein Godejord United States Arup Hilde Benedikte Østlund Norway Kværner Mike Paschalis Belgium BESIX Wenche Rettedal Norway Statoil Tom Wike Norway ØKAW Rolf Larssen Norway Aas Jacobsen Michel Vache France Doriseng Kåre Hjorteset United States BergerABAM Milos Zich Czech Republic Strasky, Husty and Partners Gordon Jackson United Kingdom Arup Energy Kjetil Thorsen Norway Snøhetta Steinar Helland Norway S Helland Konsult João Almeida Portugal Instituto Superior Técnico Lisboa Adrian Gnägi Switzerland VSL International Ltd. Terje Kanstad Norway The Norwegian Univ.of Science & Tech Milan Kalny Czech Republic Pontex s.r.o. Prague David Fernández-Ordóñez Switzerland fib Stein Atle Haugerud Norway Dr. techn. Olav Olsen a.s. Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne) Fernando Stucchi Brazil ABECE/EGT Luis Peset Gonzales Spain Dragados SA Michel Hamon France Doris Engineering Scott Haynes Hong Kong VSL Paul Notenboom Netherlands Arcadis Christophe Rozier France Bouygues Travaux Publics Coen Van der Vliet Netherlands Arcadis Hugo Corres Spain FHECOR Ingenieros Consultores Dag Nikolay Jenssen Norway - -
WP1.2.2 - Submerged floating tube bridges (SFTB)Sometimes our infrastructures need to cross water. Immersed tunnels that sit on the seabed are widely used; more than 100 have been built.Submerged floating tube bridges (SFTB) have never been built. Submerged floating tube bridges are floating bridges, submerged at a defined depth below the water surface. They may be supported between landfalls, either by tension legs or pontoons. They have a closed cross section, like the one of an ordinary tunnel, but they behave like a bridge.The main scope of this working party is to provide the community with the information needed regarding the SFTB technology.
First name Last name Country Affiliation Gordon Jackson United Kingdom Arup Energy David Fernández-Ordóñez Switzerland fib Stein Atle Haugerud Norway Dr. techn. Olav Olsen a.s. Arianna Minoretti Norway Statens vegvesen Coen Van der Vliet Netherlands Arcadis Bjørn Isaksen Norway Norwegian Road Administration Hugo Corres Spain FHECOR Ingenieros Consultores Tor Ole Olsen Norway Olav Olsen a.s. Dirk Jan Peters Netherlands RHDHV Heang-ki Lee Korea, Republic of Kaist ERC center for SFT Mathias Egeland Eidem Norway Statens vegvesen (NPRA) Marco Novello Italy Sapeim Noelia Gonzalez Patiño Spain Ggravity-Dragados Yuichiro Kawabata Japan - -
WP1.2.3 - Environmental benefits of marine concrete structuresThe WP would work on the topics of influence of the marine concrete structures on the biological environment, climate challenges (CO2) for marine structures and resilience of marine structures respect to climate changes. An additional topic could be how marine concrete structures can help reducing the negative environmental aspects of nowadays activities, like congestions, polluting factories, renewable energies, food production and so on.
First name Last name Country Affiliation Arianna Minoretti Norway Statens vegvesen Christian John Engelsen Norway SINTEF Carl Bois France Quiet Oceans Tim Fristed Norway Multiconsult Evert Mul Norway NINA Liberato Ferrara Italy Politecnico di Milano Satoshi Komatsu Japan Yokohama National University Luca Martinelli Italy Politecnico di Milano - Dep. of Civil and Environmental Engineering Marco Novello Italy Sapeim Tor Ole Olsen Norway Olav Olsen a.s. Cheng Shanshan United Kingdom University of Plymouth Aad van der Horst Netherlands - -
WP1.2.4 - Submerged/floating bridges in seismic areasThe WP would work on floating structures as solutions for seismic areas.
First name Last name Country Affiliation Luca Martinelli Italy Politecnico di Milano - Dep. of Civil and Environmental Engineering David Fernández-Ordóñez Switzerland fib Federico Perotti Italy Politecnico di Milano Dora Foti Italy Politecnico di Bari Raffaele Landolfo Italy Università degli Studi di Napoli "Federico II" Federico Mazzolani Italy Università degli Studi di Napoli "Federico II" Beatrice Faggiano Italy Università degli Studi di Napoli "Federico II" Yiqiang Xiang China Zhejiang University Yonggang Shen China Zhejiang University Margaux Geuzaine Belgium NatHaz Modeling Laboratory -
WP1.2.5 - Inspections monitoring and maintenance for constructionsThe WP will focus on how to best solve issues on inspections and continuous monitoring to answer to the maintenance problems, toward a more durable life for marine structures.
First name Last name Country Affiliation Giovanni Massari Italy SAIPEM David Fernández-Ordóñez Switzerland fib Marco Novello Italy Sapeim Simon Fjendbo Denmark DTI - Danish Technological Institute Matteo Gastaldi Italy Politecnico of Milano Samindi Samarakoon Norway University of Stavanger Carola Corazza Italy HBK Claudia Gennaro Italy SISGEO Thibaut Lando France Antea Group Hadeel Maiah United Arab Emirates Gulf Survey Régis Blin Switzerland SMARTEC SA -
WP1.2.6 - Solutions for floating structuresThe WP would work on several topics, like cracks and self-healing (also involving COM 4) and optimisation of the weight of the structures (use of lightweight concrete, alternative materials for reinforcement..).
First name Last name Country Affiliation David Fernández-Ordóñez Switzerland fib Patrick Bamonte Italy Politecnico di Milano
First name Last name Country Affiliation Tor Ole Olsen Norway Olav Olsen a.s. Harald Rogne Norway Olav Olsen David Fernández-Ordóñez Switzerland fib Stein Atle Haugerud Norway Dr. techn. Olav Olsen a.s. Arianna Minoretti Norway Statens vegvesen Coen Van der Vliet Netherlands Arcadis Satoshi Komatsu Japan Yokohama National University Jan Suchorzewski Sweden RISE Research institutes of Sweden Mathias Egeland Eidem Norway Statens vegvesen (NPRA) Liberato Ferrara Italy Politecnico di Milano Heang-ki Lee Korea, Republic of Kaist ERC center for SFT Gordon Jackson United Kingdom Arup Energy Alberto Meda Italy University of Rome “Tor Vergata” Noelia Gonzalez Patiño Spain Ggravity-Dragados Aad van der Horst Netherlands - Aurelio Muttoni Switzerland École polytechnique fédérale de Lausanne (EPF Lausanne) Federico Perotti Italy Politecnico di Milano Cheng Shanshan United Kingdom University of Plymouth Luca Martinelli Italy Politecnico di Milano - Dep. of Civil and Environmental Engineering Terje Kanstad Norway The Norwegian Univ.of Science & Tech Marco Novello Italy Sapeim -
-
TG1.3 - Buildings
The use of concrete in Building Structures is widespread throughout the world and is generally well documented in the various national codes and standards. There are however a number of areas where guidance to designers is unclear or where significant interpretation is required. The aim of this task group is to review the current design and construction approaches used and to identify where additional guidance is required. Where it is felt necessary, the group will undertake the appropriate literature searches, review the available current guidance and produce new design advice and recommendations in the form of fib bulletins.
The main goals of TG1.3 main goals are to:
- identify how recent improvements in concrete knowledge and technology are, or could be, applied to building structures;
- prepare state-of-the-art reports, guidelines and recommendations on the use of concrete in the design and construction of concrete buildings.
-
WP1.3.1 - Structural Design of Concrete Transfer StructuresTransfer structures are often used in building structures as a means of varying load paths through the structure to suit changes in the building grid. Transfer structures typically attract loadings from large areas of a structure and are therefore required to accommodate very large forces. The design of such structures is often outside the scope of normal code guidance and may require a degree of interpretation and engineering judgement. Transfer structures will normally be classified as “Key Elements” and therefore considerations of robustness and progressive collapse are key to their design.The main goals of WP1.3.1 will be to provide a reference document which will describe the types and features of concrete transfer structures and provide information and guidance on their design and construction.
First name Last name Country Affiliation Andrew Truby United Kingdom Truby Stevenson Ltd Jean Marc Jaeger France SETEC TPI Stuart Marsh United Kingdom Skidmore Owings & Merrill LLP Fabrizio Palmisano Italy PPV Consulting Studio Palmisano Perilli Associati, Paulo Silva Lobo Portugal University of Madeira-Funchal Kaare Dahl Denmark Rambøll Phil Mansell United Kingdom Robert Bird -
WP1.3.2 - Planning Movement Joints in Concrete BuildingsFor larger concrete buildings, movement joints are necessary to control the effects of drying shrinkage, temperature and creep. The positioning of movement joints is dependent on building shape, positioning of cores and shear walls and can be influenced by construction sequence and pour layout. The presence of joints is a fundamental factor in planning the stability system of buildings.There is a trend in hospitals and other buildings requiring hygienic conditions towards wider spacing of movement joints.The main goals of WP1.3.2 will be to create a reference document that will provide guidance on planning for movement and positioning of movement joints in concrete buildings, with particular emphasis on enclosed rather than open buildings.
First name Last name Country Affiliation Jeremy Wells United Kingdom WSP Parsons Brinckerhoff Ltd Jenny Burridge United Kingdom The Concrete Centre Stuart Marsh United Kingdom Skidmore Owings & Merrill LLP Nadarajah Surendran United Kingdom PRAETER Engineering Ltd Richard Reynolds United Kingdom Buro Happold Andrew Truby United Kingdom Truby Stevenson Ltd Andrew Fraser United Kingdom Ramboll UK Christian Tygoer United Kingdom AKT II Phil Mansell United Kingdom Robert Bird Colin Banks United Kingdom Laing O’Rourke Keith Jones United Kingdom Ramboll Dave Cotton United Kingdom Atkins
First name Last name Country Affiliation George Keliris United Kingdom Buro Happold Ltd. Steve Mckechnie United Kingdom Arup Jean Marc Jaeger France SETEC TPI Andrew Fraser United Kingdom Ramboll UK Pierre Leflour France Setec tpi Richard Reynolds United Kingdom Buro Happold Paulo Silva Lobo Portugal University of Madeira-Funchal Jenny Burridge United Kingdom The Concrete Centre Stefano Cammelli United Kingdom BMT Fluid Mechanics Ltd. Phil Mansell United Kingdom Robert Bird Colin Banks United Kingdom Laing O’Rourke Andrew Truby United Kingdom Truby Stevenson Ltd Nadarajah Surendran United Kingdom PRAETER Engineering Ltd Stuart Marsh United Kingdom Skidmore Owings & Merrill LLP Mario Alberto Chiorino Italy Politecnico di Torino John Cairns United Kingdom Heriot-Watt University Kaare Dahl Denmark Rambøll David Fernández-Ordóñez Switzerland fib Jeremy Wells United Kingdom WSP Parsons Brinckerhoff Ltd Nick Zygouris Greece Lithos Consulting Engineers Fabrizio Palmisano Italy PPV Consulting Studio Palmisano Perilli Associati, -
TG1.4 - Tunnels
Transportation, mining, water management, energy network development, combined with environmental concerns, have led to a significant increase in the construction of tunnels around the world. Along with other materials, structural concrete plays a primary role in the realisation of these structures, and many issues related to the use of concrete in tunnels ought to be accordingly addressed in order to promote the best use of structural concrete in this field of civil engineering.
The main goals of TG1.4 main goals are to:
- identify how recent improvements in concrete knowledge and technology are, or could be, applied to tunnels, and how new developments in tunnel construction can rely upon concrete technologies;
- prepare state-of-the-art reports, guidelines, recommendations on the use of concrete in tunnel design and construction.
First name Last name Country Affiliation Frank Dehn Germany KIT Karlsruher Institut für Technologie Konrad Bergmeister Austria Univ. Bodenkultur Carola K. Edvardsen Denmark Cowi AS Alberto Meda Italy University of Rome “Tor Vergata” Hiroshi Dobashi Japan Shutoko Technology Center David Fernández-Ordóñez Switzerland fib Peter Jackson France Sistra Albert De la Fuente Spain Universitat Politècnica de Catalunya Catherine Larive France Tunnels Study Centre Giuseppe Tiberti Italy University of Brescia ab van den bos Netherlands NLyse -
WP1.4.3 - Fiber Reinforced Sprayed Concrete in Tunnels and Underground spacesTunnel and underground spaces lining are more often made using Fiber-Reinforced Concrete (FRC) sprayed concrete. This solution, initially used for temporary structures, is nowadays adopted also for permanent structures. Codes and guidelines for Fiber Reinforced Concrete do not completely cover the sprayed concrete solution. Due to the structural relevance of these applications, it is important to fill in this gap with adequate information.The main scope of the Working Party is to support the designer, construction companies, clients in adopting this technology. Information on the design process, considering aspect as the material characterization and the quality control will be introduced. The indications will refer to Model Code 2010 as a reference document.
First name Last name Country Affiliation Frank Dehn Germany KIT Karlsruher Institut für Technologie David Fernández-Ordóñez Switzerland fib Panagiotis Spyridis Germany - Albert De la Fuente Spain Universitat Politècnica de Catalunya Alberto Meda Italy University of Rome “Tor Vergata” Giovanni Plizzari Italy University of Brescia Catherine Larive France Tunnels Study Centre Alessandro Fantilli Italy Politecnico di Torino Colin Eddie United Kingdom CECL Alan Bloodworth United Kingdom Warwick University Giovanni Blasini Italy Consultant Sotiris Psomas United Kingdom Morgan Sindall Lindita Kodra France Bouygues Mike King United Kingdom WSP Nicolas Bsaibes France Vinci Construction Grands Projects Sylvie Giuliani-Leonardi France Vinci Construction Grands Projets Michele Mangione United Kingdom ARUP Anmol Bedi United Kingdom Bedi Consulting Ross Dimmock United Kingdom Normet Richard Forrester United Kingdom BAM Nuttal Sébastien Bouteille France Développement durable Giuseppe Tiberti Italy University of Brescia Jiang Su United Kingdom Bedi Consulting Marco di Prisco Italy Politecnico di Milano ab van den bos Netherlands NLyse Jeovan Freitas Norway Private -
WP1.4.4 - Assemblies and fasteningsTunnels are provided with a variety of industry-specific construction products for the connection and assembly of various elements. These items play an important role as regards the construction phase, as well as the safety, quality, and durability in the operation phase of the tunnel structure.Fastenings for catenary installations and heavy suspended equipment are specially treated in tunneling since they are associated with very long life-cycle requirements and load types (long term suspension loads and dynamic/cyclic loads), and because – as historically seen – the failure of such elements poses significant human safety and financial/operational threats.
First name Last name Country Affiliation Panagiotis Spyridis Germany - Alberto Meda Italy University of Rome “Tor Vergata” Giovanni Muciaccia Italy Politecnico di Milano Mike King United Kingdom WSP Philipp Grosser Liechtenstein Hilti Corporation Gael Le Bloa France HILTI France David Fernández-Ordóñez Switzerland fib Agemar Manny Germany - Boglárka Bokor Liechtenstein Hilti Corporation Donal Coughlan United Kingdom Jacobs / Crossrail Christophe Delus France Optimas-Sofrasar Ivica Duzic Germany Halfen Anthony Harding Australia Jacobs / Brisbane Metro Spyros Konstantis Greece Independent Consultant Graham Langshaw United Kingdom Technical Tunneling Components Francois Renault France Vinci Alejandro Sanz Spain gGRAVITY Engineering Angelos Gakis Austria Dr Sauer & Partners
-
TG1.5 - Structural sustainability
Recently, sustainability has been discussed with regard to materials, recycling and so on, relating to the reduction of CO2 emissions. However, sustainability has another aspect, for example, the structure, design and construction, which can lead to reducing energy consumption and non-renewable resources over the course of the full life-time of a structure. Minimising energy consumption and non-renewable resources, will be discussed in the context of environmental, social and economic aspects in order to provide sustainable solutions for our society. These discussions will be key for developing sustainable structures. This philosophy is defined as “Structural Sustainability”.
The aim of this Task Group is to focus on minimising energy consumption and non-renewable resources during the life-time of structures from the structural point of view. Basically, the structures built using current specifications are durable. Therefore, structural sustainability should be defined as the difference from existing technologies to new ones in order to make structural sustainability clear. Examples of structural type, detailing, design, special construction techniques and so on for structural sustainability will be collected to publish a state-of-the-art report.
First name Last name Country Affiliation Gordon Clark United Kingdom Consultant Milan Kalny Czech Republic Pontex s.r.o. Prague Akio Kasuga Japan Sumitomo Mitsui Construction Co., Ltd José Arizón Spain Aguacanal Kenichi Kata Japan Sumitomo Mitsui Consctruction Co, Ltd. João Almeida Portugal Instituto Superior Técnico Lisboa Ekkehard Fehling Germany IBB Fehling + Jungmann GmbH Michel Moussard France Consultant Alessandro Palermo New Zealand The University of Canterbury David Fernández-Ordóñez Switzerland fib Petr Hajek Czech Republic Czech Technical University in Prague Philippe Vion France VINCI Construction Grands-Projets Hugo Corres Spain FHECOR Ingenieros Consultores Natividad Garcia Troncoso Ecuador Escuela Superior Politecnica del Litoral Khuyen Hoang Japan - Adriano Reggia Italy - Borja Regúlez Spain - Konrad Bergmeister Austria Univ. Bodenkultur Agnieszka Bigaj-van Vliet Netherlands TNO - Buildings, Infrastructures and Maritime -
TG1.6 - History of concrete structures
During the long history of CEB, FIP and now fib, the main objectives of their commissions, task groups and special activity groups were and are actual topics of research, application and dissemination.
Construction history is a rapidly growing research field in the community of architects and civil engineers. The last conference on construction history took place in Paris in July 2012 and consisted of 66 sessions. Only two of them focused on concrete and concrete construction. Furthermore, none of the key lectures was related to concrete.
The task group intends to set up a process which shall result in the publication of a series of bulletins covering the global history of structural concrete, from its first developments to the present situation.
At the beginning, it is very important to organise the extremely broad field of historic research. It is suggested to start with a narrower approach, mainly with the collection of historic material. A broader approach implies the integration of concrete history within the time, including political, social, climatic, economic and ecological circumstances. This will require more time as well as the addition of historically educated experts.
First name Last name Country Affiliation Gordon Clark United Kingdom Consultant David Fernández-Ordóñez Switzerland fib Edwin Trout United Kingdom The Concrete Society François Cussigh France Vinci Construction Per Jahren Norway Consultant Patricia Garibaldi Germany Technische Univ. Dresden Rita Greco Italy Technical University of Bari - DICATECH Jean Michel Torrenti France Univ Gustave Eiffel Manfred Curbach Germany Technische Univ. Dresden Michel Moussard France Consultant F. Javier León Spain FHECOR - Ingenieros Consultores Luc Taerwe Belgium Ghent University Paul Acker France Consulting Ruben Paul Borg Malta University of Malta Pepa Cassinello Spain Universidad Politécnica de Madrid -
TG1.7 - Construction of concrete structures
The areas of interest have been developed from the viewpoint that the construction process has two main components: perception related aspects and process aspects. The perception related aspects comprise materials, workmanship, formwork and scaffolding, curing of concrete, concrete surface, testing and monitoring, high performance concrete, special technologies, specifications and training/education. The process related aspects comprise the construction process of concrete structures, quality management and life cycle management.
The task group addresses state-of-the-art basic principles of the construction process of concrete structures at site. Furthermore, the task group reflects on anticipated developments, which could have a significant influence on construction. The objective is to develop awareness regarding aspects which have an impact on safety, serviceability, durability and environmental issues of concrete structures to be built on site, and to provide information as how to handle the basic principles. The output will be presented as internationally harmonised reports.
First name Last name Country Affiliation Fabrice Cayron France Bouygues Travaux Publics Didier Primault France Vinci Construction José Turmo Coderque Spain Universitat Politecnica de Catalunya Günter Rombach Germany Techn. Univ. of Hamburg-Harburg Aad van der Horst Netherlands - Oliver Fischer Germany Technical University Munich David Fernández-Ordóñez Switzerland fib Gopal Srinivasan United Kingdom Arup Marcos Sanchez Ireland ARUP Héctor Bernardo Gutiérrez Spain Pontem Engineering Services -
TG1.8 - Concrete industrial floors
Concrete is often used for industrial floors that are designed to withstand static and dynamic loads as well as the degradation caused by operations and the environment.
Industrial floor must be properly designed for resisting point and distributed loads due to shelves and vehicles present on the floor. Seismic action transmitted by shelves must be considered in seismic areas.
Shrinkage phenomena play a major role since they provoke early age cracks that can be controlled by contraction joints that are likely to damage due to wheel crossing.
Another important issue is represented by the top finishing layer that had to be properly designed to resist abrasion.
Main scope of the Task Group is to briefly describe the most important issues in concrete technology for industrial floors, give relevant references to important literature, describe important design premises, give guidance to potential improvements and maintenance. Some attention will be also devoted to refurbishing of existing floors.
First name Last name Country Affiliation Gianluigi Pirovano Italy - Valérie Pollet Belgium BBRI-Rilem Pedro Serna Ros Spain Univ. Politecnica de Valencia-Icitech Johan Silfwerbrand Sweden KTH Royal Institute of Technology Alberto Meda Italy University of Rome “Tor Vergata” Giovanni Plizzari Italy University of Brescia David Fernández-Ordóñez Switzerland fib Bryan Barragan France OCV Chambery International Klaus Holschemacher Germany HTWK Leipzig Amir Bonakdar United States Euclid Chemical – ACI Todd Clarke Australia Barchip Antonio Conforti Italy University of Brescia Carles Cots Corominas Spain BASF Albert De la Fuente Spain Universitat Politècnica de Catalunya Vinciane Dieryck Belgium BBRI Navneet Narayan India Bekaert Ralf Winterberg Malaysia Managing Director Raul Luis Zerbino Argentina LEMIT-CIC
First name | Last name | Country | Affiliation |
---|---|---|---|
Josée | Bastien | Canada | University Laval |
João | Almeida | Portugal | Instituto Superior Técnico Lisboa |
Akio | Kasuga | Japan | Sumitomo Mitsui Construction Co., Ltd |
Gordon | Clark | United Kingdom | Consultant |
Giovanni | Plizzari | Italy | University of Brescia |
Aad | van der Horst | Netherlands | - |
Andrew | Truby | United Kingdom | Truby Stevenson Ltd |
Tor Ole | Olsen | Norway | Olav Olsen a.s. |
Alberto | Meda | Italy | University of Rome “Tor Vergata” |
Jim | Forbes | Australia | Arcadis |
Manfred | Curbach | Germany | Technische Univ. Dresden |
David | Fernández-Ordóñez | Switzerland | fib |
Michel | Moussard | France | Consultant |
Shoji | Ikeda | Japan | Hybrid Research Inst. Inc. |
Michel | Virlogeux | France | Virlogeux Consulting |
Hugo | Corres | Spain | FHECOR Ingenieros Consultores |
Thierry | Delemont | Switzerland | T-ingenierie SA |
Arianna | Minoretti | Norway | Statens vegvesen |