• COM4: Concrete & concrete

    COM4: Concrete & concrete technology

  • COM4: Concrete & concrete

    COM4: Concrete & concrete technology

Motivation

The overall motivation of fib Commission 4 (COM4) is to make theoretical and practical developments in the field of concrete and concrete technology, and to present these developments in an understandable and code-type formulated manner. COM4 positions itself at the forefront of new technologies and techniques by considering both fundamental research and practical issues.

Scope and objective of technical work

The aim of COM4 is to collect and to validate information on the properties and behaviour of concrete for structural applications subjected to various types of loading and environmental conditions. The commission focuses its attention both on traditional types of concrete, in particular under unusual conditions, and on new types of concrete and cementitious composites under all types of loading and condition. The properties of the concrete types considered should be formulated in such a way that it is possible to derive behavioural models and design recommendations for practical applications.

 

tbdCommission Chair
Jean Michel Torrenti
Tor Arne Martius HammerDeputy Chair
Tor Arne Martius-Hammer

First name Last name Country Affiliation
Frank Dehn Germany KIT Karlsruher Institut für Technologie
Steinar Helland Norway S Helland Konsult
Joost Walraven Netherlands Delft University of Technology
Mette Geiker Norway NTNU - Trondheim Norwegian Univ.
Viktor Mechtcherine Germany Technical Univ. Dresden
David Fernández-Ordóñez Switzerland fib
Hans-Dieter Beushausen South Africa University of Cape Town
Harald Müller Germany SMP Ingenieure im Bauwesen GmbH
Steffen Grünewald Netherlands Ghent University
Geert de Schutter Belgium Ghent University
Tamon Ueda China Shenzhen University
Ludger Lohaus Germany Leibniz Universität Hannover
Lucie Vandewalle Belgium KULeuven
Jean Michel Torrenti France Univ Gustave Eiffel
Roman Wan-Wendner Belgium Ghent University
Nikola Tošić Spain Universitat Politècnica de Catalunya
Fragkoulis Kanavaris United Kingdom Arup
Martin Cyr France Université de Toulouse
Tor Martius-Hammer Norway SINTEF AS
Michael Haist Germany Leibniz Universität Hannover
Eduardo Julio Portugal Instituto Superior Tecnico, Universidade de Lisboa

  • TG4.1 - Fibre-reinforced concrete

    Fibre concrete is more than 50 years old and the design rules have undergone developments over the years. TG4.1 will make theoretical and practical developments in the field of fibre-reinforced concrete materials technology, rheology and materials characterisation and modelling and to present these developments in code-type formulations.

    The task group collects and validates information on the behaviour of fibre-reinforced concrete materials, subjected to various types of loading and environmental conditions.

    TG4.1 is currently finalising a bulletin on the background to the design rules in MC2010.


    Lucie VandewalleConvener
    Lucie Vandewalle

    First name Last name Country Affiliation
    Gerhard Vitt Germany Bekaert GmbH
    Lucie Vandewalle Belgium KULeuven
    David Fernández-Ordóñez Switzerland fib
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Pierre Rossi France IFSTTAR
    Ravindra Gettu India Indian Institute of Technology Madras
    Barzin Mobasher United States Arizona State University
    Giovanni Plizzari Italy University of Brescia
    Joaquim A. O. Barros Portugal Universidade do Minho
    György L. Balázs Hungary Budapest Univ. of Techn. & Economics
    Marco di Prisco Italy Politecnico di Milano
    Avraham Dancygier Israel Technion-Israel Institute of Technology
    Gustavo Parra-Montesinos United States University of Michigan
    Ingemar Löfgren United Kingdom -
    Wolfgang Kusterle Germany OTH Regensburg
    Horst Falkner Germany Retired
    Nemkumar Banthia Canada Univ. of British Columbia
    Tim Soetens Belgium Sanacon
    Bryan Barragan France OCV Chambery International
    Billy Boshoff South Africa University of Pretoria
    Terje Kanstad Norway The Norwegian Univ.of Science & Tech
    Bruno Massicotte Canada Ecole Polytechnique de Montréal
    Fausto Minelli Italy University of Brescia
    Sandro Moro Italy BASF
    Pedro Serna Ros Spain Univ. Politecnica de Valencia-Icitech
    ab van den bos Netherlands NLyse
    Elena Vidal Sarmiento Spain Bekaert
    François Duplan France -
    Cristina Frazao Portugal -
    Jenny Thiemicke Germany University of Kassel

  • TG4.2 - Ultra high-performance fibre-reinforced concrete

    Task Group 4.2 (TG4.2) will make theoretical and practical developments for concretes with strength > 120 N/mm2 in the field of fibre-reinforced concrete materials technology, rheology and materials characterisation and modelling to present these developments in code-type formulations. Work is applicable to concrete with fibres of various types, such as steel, polymeric or combinations thereof.

    The work of TG4.2 is coordinated with the work of fib TG4.1 (Fibre-reinforced concrete) that develops recommendations for conventional fibre-reinforced concrete.


    Joost WalravenConvener
    Joost Walraven

    First name Last name Country Affiliation
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Pietro Gambarova Italy Politecnico di Milano
    Mouloud Behloul France Lafarge
    Stefan Greiner Germany Bilfinger + Berger AG
    Alain Simon France Eiffage TP
    Kai Bunje Germany IBB Fehling & Jungmann GmbH
    Thierry Thibaux France Eiffage
    Makoto Katagiri Japan Taiheiyo Cement Corporation
    Jacques Resplendino France Setec TPI
    Marijan Skazlic Croatia University of Zagreb
    Torsten Leutbecher Germany Universität Siegen
    Berndt Aarup Denmark CRC Technology ApS
    Benjamin Graybeal United States PSI/FHWA Structures
    Pierre Marchand France IFSTTAR
    Björn Frettlöhr Germany -
    Joost Walraven Netherlands Delft University of Technology
    Ekkehard Fehling Germany IBB Fehling + Jungmann GmbH
    Pierre Rossi France IFSTTAR
    Dario Redaelli Switzerland Haute École d'Ingénierie et d'Architecture de Fribourg
    David Fernández-Ordóñez Switzerland fib
    Emmanuel Denarie Switzerland EPF Lausanne
    Steffen Grünewald Netherlands Ghent University
    Dirk Schlicke Austria Technische Universität Graz
    Yasuhiko Sato Japan Waseda University
    Karl-Heinz Reineck Germany University of Stuttgart
    Michael Schmidt Germany Fehling + Jungmann GmbH
    François Toutlemonde France Université Gustave Eiffel
    Marco di Prisco Italy Politecnico di Milano

  • TG4.3 - Structural design with flowable concrete

    Flowable concrete (highly flowable, self-compacting and/or self-levelling) has evolved from a special type to a commonly applied building material. fib Task Group 4.3 (TG4.3) considers three aspects of flowable concrete (FC) for structural design: material properties, production effects and structural boundary conditions. The flow of concrete (initiated by some vibration and/or the weight of concrete) can affect the structural characteristics of hardening or hardened concrete. The mixture composition has to be adjusted and optimised in order to obtain a high flowability. TG4.3 aims at promoting the application of flowable concrete, improving and adapting the concrete design and the production technology and its implementation in guidelines and codes.


    Steffen GrünewaldConvener
    Steffen Grünewald
    Liberato FerraraCo-Convener
    Liberato Ferrara

    First name Last name Country Affiliation
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Liberato Ferrara Italy Politecnico di Milano
    Mouloud Behloul France Lafarge
    Ravindra Gettu India Indian Institute of Technology Madras
    Bas Obladen Netherlands Strukton Group
    Peter Billberg Sweden Strängbetong
    Laetitia Martinie France INSA
    Nicolas Roussel France IFSTTAR
    Bernhard Freytag Austria Technische Universität Graz
    Mohamed Sonebi Ireland Queen’s University Belfast
    Patrick Stähli Switzerland Concretum Construction Science AG
    Filipe Laranjeira Spain Univ. Politecnica de Catalunya
    Guido Bertram Germany Grawe + Bertram Ingenieure
    Andreas Leemann Switzerland EMPA
    Susan Taylor Ireland Queen's University Belfast
    Sandra Nunes Portugal University of Porto
    On Spangenberg Denmark Technical University of Denmark
    Gregor Fischer Denmark Technical University of Denmark
    Joost Walraven Netherlands Delft University of Technology
    Mette Geiker Norway NTNU - Trondheim Norwegian Univ.
    Terje Kanstad Norway The Norwegian Univ.of Science & Tech
    Henrik Stang Denmark University of Denmark
    Konrad Zilch Germany TU München
    Steffen Grünewald Netherlands Ghent University
    Wolfram Schmidt Germany BAM - Bundesanstalt für - Materialforschung und -prüfung
    John Cairns United Kingdom Heriot-Watt University
    David Fernández-Ordóñez Switzerland fib
    Bryan Barragan France OCV Chambery International
    Harald Beitzel Germany Inst. für Bauverfahrens- und Umwelttechnik
    Yasuhiko Sato Japan Waseda University
    Lucie Vandewalle Belgium KULeuven
    Joaquim A. O. Barros Portugal Universidade do Minho
    Marco di Prisco Italy Politecnico di Milano
    Tor Martius-Hammer Norway SINTEF AS

  • TG4.4 - Aesthetics of concrete surfaces

    The notion of exposed concrete is subjective and varies according to the viewer. The motivation of fib Task Group 4.4 (TG4.4) is to show possibilities how to categorise and evaluate visible concrete surfaces and how to point out technical factors of influence.

    TG4.4 will formulate a state-of-the-art technical report on how exposed concrete is defined and built. The final aim is to create a generally accepted recommendation or guidelines for exposed concrete with a homogenous appearance. This generally accepted recommendation or guidelines will be characterised by classifying exposed concrete in different categories. The limit of its objective performance will be considered as well as the consequences on the effort on-site and the planning of structural framework.


    Ludger LohausConvener
    Ludger Lohaus

    First name Last name Country Affiliation
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Tone Anita Østnor Norway SINTEF Building and Infrastructure
    Lluis Casals Roige Spain Oficina tecnica d’enginyeria civil
    Klaus-R. Goldammer Germany Deutscher Beton- und Bautechnik-Verein e.V.
    Christoph Motzko Germany TU Darmstadt
    Alexander Reinisch Austria Doka Industrie GmbH
    Erik Boska Germany TU Darmstadt
    Antonia Pacios Alvarez Spain ETS Ingenieros Industriales - UPM
    Klaartje de Weerdt Norway NTNU
    Christian Hofstadler Austria Institut für Baubetrieb und Bauwirtschaft
    Karen Fischer Germany Leibniz Universität Hannover
    Elisabeth Hierlein Germany FDB - Fachvereinigung Deutscher Betonfertigteilbau e.V.
    Ludger Lohaus Germany Leibniz Universität Hannover
    David Fernández-Ordóñez Switzerland fib
    Bryan Barragan France OCV Chambery International
    Maher Tadros United States University of Nebraska-Lincoln
    Morten Gjerde New Zealand Victoria University of Wellington
    Eduardo Julio Portugal Instituto Superior Tecnico, Universidade de Lisboa
    Jónatas Valenca Portugal Instituto Superior Técnico
    Hugo Sérgio Sousa Costa Portugal ISEC - Institute of Engineering of Polytechnic Institute of Coimbra
    Robert Armbruster United States The Armbruster Company, Inc.
    Elisa Franzoni Italy University of Bologna
    Elisabeth Marie-victoire France Laboratoire de Recherche des Monuments Historiques
    Claudia Devaux France dda devaux & devaux architects
    Myriam Bouichou France -
    Teresa Cunha - Ferreira Portugal University of Porto
    Xavier Hallopeau France SECCO Corrosion Consulting
    Carmen Andrade Spain Centre Internacional de Mètodes Numèrics en l’Ènginyeria (CIMNE)
    Susana Bravo Fonseca Portugal Laboratório Nacional de Engenharia Civil, LNEC
    Sofia Ribeiro Portugal Laboratório Nacional de Engenharia Civil, LNEC
    Elsa Eustáquio Portugal LNEC
    Véronique Bouteiller France IFSTTAR
    Helene Silva Portugal Laboratório Nacional de Engenharia Civil, LNEC

  • TG4.5 - Time-dependent Behavior of Concrete

    The primary objective of the task group is to identify limiting aspects during the design of new or assessment of existing structures related to predicting the time-dependent (mechanical) behavior of “new” but also “traditional” concrete types. Based on the identified short-comings the task group will initiate literature reviews, compile/ update consistent databases and update existing model formulations. Where possible the TG will make use of the data already available in the scientific literature. Where this is not the case, the task group will strive to develop research strategies and coordinate research efforts by its members, supported by national or international research funds.

    The task group plans to develop databases and calibrated prediction models for the time-dependent mechanical properties of cast concrete including:

    • Maturity vs. time concepts, applicable to early age and multi-decade predictions
    • Development of compressive and tensile strength as function of maturity/ time;
    • Development of Young’s modulus as function of maturity/ time;
    • Development of fracture energy as function of maturity/ time;
    • Development of creep and shrinkage as function of maturity/ time;
    • Empirical relationship between mechanical properties and compressive strength as function of maturity/ time;
    • Development of stress-strain diagram as function of maturity/ time;
    • Transport of liquids and gases;
    • Guidance for the coupled hygro-thermal chemo-mechanical analysis of concrete with relevance to e.g. mass concrete or certain structural components prone to early-age cracking;
    • Guidance for the time-dependent nonlinear (fracture mechanical) analysis of concrete including advanced constitutive models and strain rate effects;
    • Time-dependent resistance of concrete subject to sustained load
    • Time-dependent resistance of concrete subject to fatigue;


    Roman Wan-WendnerConvener
    Roman Wan-Wendner

    First name Last name Country Affiliation
    Guang Ye Netherlands Delft University of Technology
    Michael Haist Germany Leibniz Universität Hannover
    David Fernández-Ordóñez Switzerland fib
    Roman Wan-Wendner Belgium Ghent University
    Dara McDonnell Australia Arup
    Harald Müller Germany SMP Ingenieure im Bauwesen GmbH
    Jan Vítek Czech Republic Metrostav a. s.
    Jean Michel Torrenti France Univ Gustave Eiffel
    Takumi Shimomura Japan Nagaoka Univ. of Technology
    Darko Tasevski Switzerland Emch+Berger AG Bern
    Alejandro Pérez Caldentey Spain Universidad Politécnica de Madrid
    Nikola Tošić Spain Universitat Politècnica de Catalunya
    Jan Cervenka Czech Republic Cervenka Consulting Ltd
    Ravi Patel Germany Institute of Building materials (IMB)
    Nadja Oneschkow Germany Leibniz University Hannover
    Eamon Stack Ireland Banagher Precast
    Peter Takacs United Kingdom aecom
    Giovanni Di Luzio Italy Politecnico di Milano
    Farid Benboudjema France ENS Paris-Saclay, Université Paris-Saclay
    Richard Caron Germany KIT
    Anja Klausen Norway NTNU
    Antonia Menga Norway NTNU
    Mohammad Najeeb Shariff India Indian Institute of Technology Bombay
    Dirk Schlicke Austria Technische Universität Graz

  • TG4.6 - Constitutive laws for concretes with supplementary cementitious materials

    The use of Supplementary Cementitious Materials (SCM) as binder in concrete is increasing, mainly driven by the need of the concrete industry to make concrete more environmentally friendly and in particular to meet official requirements for lower CO2 emissions. Here, it is to replace considerable amount of the high emitting Portland cement with low emitting SCM. The fib Model Code for Concrete Structures 2010 (MC2010) covers the use of SCM, but limits the materials and the amount of SCM. The overall motive of fib Task Group 4.6 (TG4.6) is to prepare the basis for an extension of the MC2010 that includes assessment of less known SCM as well as larger replacements.

    TG4.6 aims to prepare a state-of-the-art report addressing the items in chapter 5.1 Materials – Concrete in the MC2010. The constitutive relations can be formulated as in, and assessed in relation to compliance with those given in MC2010.


    Fragoulis KanavarisConvener
    Fragoulis Kanavaris

    First name Last name Country Affiliation
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    Steinar Helland Norway S Helland Konsult
    David Fernández-Ordóñez Switzerland fib
    Fragkoulis Kanavaris United Kingdom Arup
    Roman Wan-Wendner Belgium Ghent University
    Tor Martius-Hammer Norway SINTEF AS
    Mette Geiker Norway NTNU - Trondheim Norwegian Univ.

  • TG4.7 - Structural Applications of Recycled Aggregate Concrete – Properties, Modeling, and Design

    The main objective of the TG is to formulate design recommendations for the structural use of RAC. This will take the form of proposing new or adjusting existing expressions and models for mechanical and structural properties of reinforced and prestressed concrete structures.

    To achieve this goal, the TG will first perform a comprehensive critical review of literature alongside a preparation of databases of experimental results regarding mechanical and structural properties of RAC. Where necessary and possible, identified gaps in existing results will be complemented by new studies of TG members within existing or new research projects. Based on this work, the TG will formulate expressions and models for the following:

    • Physical properties of RAC – density, water absorption, permeability
    • Mechanical properties – compressive strength, tensile strength, modulus of elasticity, stress–strain relationship, fracture energy, shrinkage, creep
    • Durability-related properties – carbonation resistance, chloride ingress, freeze-thaw resistance, chemical attack
    • Structural behavior – flexural strength, shear strength, axial strength, punching strength, seismic resistance, fire resistance, deformation, cracking, bond and anchorage
    • Fire resistance of RAC and RAC structures – resistance under fire and residual resistance after exposure to elevated temperatures of RAC and reinforced and prestressed RAC members


    Nikola TošićConvener
    Nikola Tošić
    Jean-Michel TorrentiCo-Convener
    Jean-Michel Torrenti

    First name Last name Country Affiliation
    Nikola Tošić Spain Universitat Politècnica de Catalunya
    Jean Michel Torrenti France Univ Gustave Eiffel
    David Fernández-Ordóñez Switzerland fib
    Harald Müller Germany SMP Ingenieure im Bauwesen GmbH
    Takafumi Noguchi Japan University of Tokyo
    Frank Dehn Germany KIT Karlsruher Institut für Technologie
    João Nuno Pacheco Portugal CERIS/c5Lab Sustainable Construction Materials Association
    Hans-Dieter Beushausen South Africa University of Cape Town
    Roman Wan-Wendner Belgium Ghent University
    Ivan Ignjatović Serbia University of Belgrade
    Albert De la Fuente Spain Universitat Politècnica de Catalunya
    Marija Nedeljković Netherlands TU Delft
    Yahya Kurama France Univ. of Notre Dame
    Jiabin Li Belgium KU Leuven
    Amor Ben Fraj France CEREMA
    George Wardeh France Un. de Cergy-Pontoise
    Flavio Stochino Italy Università di Cagliari
    Miren Etxeberria Spain UPC Edu
    Sindy Seara-Paz Spain Universidade a Coruña
    Mirian Velay-Lizancos United States Purdue University
    Romildo Toledo Filho Brazil Federal University of Rio de Janeiro
    Liberato Ferrara Italy Politecnico di Milano
    Samer Al-Martini United Arab Emirates Abu Dhabi University
    Marco del Galdo Italy Politecnico di Milano
    Elhem Ghorbel France CY Cergy Paris university
    Belén Gonzalez-Fonteboa Spain Universidade de Coruña
    Enzo Martinelli Italy University of Salerno
    Marco Pepe Italy University of Salerno
    Jan Podroužek Czech Republic Brno University of Technology
    Reem Sabouni United Arab Emirates Abu Dhabi University
    Snežana Marinković Serbia University of Belgrade
    Ali Abbas United Kingdom University of East London
    Fabienne Robert France CERIB
    Sivakumar Kandasami India L&T Construction
    Boksun Kim United Kingdom University of Plymouth
    Dan V. Bompa United Kingdom University of Surrey
    Shahria Alam Canada University of British Columbia
    Bohuslav Slánský Czech Republic Skanska
    Pawel Sikora Poland West Pomeranian University of Technology in Szczecin
    Sandrine Braymand France University of Strasbourg
    Jean Michel Mechling France Université de Lorraine
    Zengfeng Zhao China Tongji University
    Débora Martinello Carlesso Spain -
    Irene Josa Spain -
    Dora Foti Italy Politecnico di Bari
    Arthur Slobbe Netherlands TNO
    Juan Garzón Netherlands TNO
    Khaled Hassan Qatar IRD (Infrastructure Research & Development)
    Cristiano Coviello Italy -
    Lucas Menegatti Brazil UFRJ
    Ana Sofia Louro Portugal LNEC

  • TG4.8 - Low-carbon concrete structures

    Decreasing the environmental impact of concrete structures is an objective put forward by almost all the actors involved in the domain of construction. Although cementitious materials intrinsically involve low embodied energy, their use in large volumes in worldwide construction lead to approximately 8% of global CO2 emissions. Portland cement is the main constituent responsible for the environmental impacts caused by the life cycle of concrete, as it generates on average more than 800 kg CO2/t of clinker.

    The task group will have two main objectives:

    1- Identify the different ways to obtain low-CO2 concretes among the different possible routes:

    • Evaluate which ones are rapidly reachable and how far we are from an universal utilization of these concretes.
    • Define the work to carry out to bring these concrete at an industrial level.
    • Estimate the scientific, technical and economical obstacles and challenges that could retard the implementation and acceptances of such concretes.

    2- Evaluate the consequences of these low-CO2 concretes on the design of concrete structures, in terms of:

    • Durability, for instance the impact of these new concretes on carbonation and chloride ingress, the most widespread problems facing reinforced concrete worldwide.
    • Structural design, with the verification of the applicability of the international codes (Eurocodes…). The part concerning creep and shrinkage will be developed in the new COM4/TG Time dependent behavior of concrete.


    Martin CyrConvener
    Martin Cyr
    Michael HaistCo-Convener
    Michael Haist

    First name Last name Country Affiliation
    Martin Cyr France Université de Toulouse
    David Fernández-Ordóñez Switzerland fib
    Michael Haist Germany Leibniz Universität Hannover
    Jean Michel Torrenti France Univ Gustave Eiffel
    Taku Matsuda Japan SUMITOMO MITSUI CONSTRUCTION CO., LTD
    Zoi Ralli Canada Lassonde School of Engineering
    Zengfeng Zhao China Tongji University
    Ali Abbas United Kingdom University of East London
    Hasanain Al-Naimi United Kingdom University of East London
    Shashank Bishnoi India Indian Institute of Technology Delhi
    Mouna BOUMAAZA France Vinci Construction
    Guillaume Habert Switzerland ETH Zurich
    Tor Martius-Hammer Norway SINTEF AS
    Rachida Idir France Cerema
    Vanderley M. John Brazil University of Sao Paulo
    Fragkoulis Kanavaris United Kingdom Arup
    Tim Lohmann​ United Kingdom Wentworth House Partnership
    Takafumi Noguchi Japan University of Tokyo
    Arezki Tagnit Hamou Canada Sherbrooke University
    Stefanie Von Greve-Dierfeld Switzerland TFB Technology and Research for Concrete Structures
    Brant Walkley United Kingdom University of Sheffield
    Roman Wan-Wendner Belgium Ghent University
    Eduardo Julio Portugal Instituto Superior Tecnico, Universidade de Lisboa
    Hugo Sérgio Sousa Costa Portugal ISEC - Institute of Engineering of Polytechnic Institute of Coimbra
    Ricardo Nuno Francisco do Carmo Portugal ISEC - Coimbra Institute of Engineering
    Jean-Philippe Vacher France MG Group
    Hisham Hafez Switzerland -
    Jörg Unger Germany Bundesanstalt für Materialforschung und -prüfung, BAM

 

fib postal address

Ch. du Barrage, Station 18
CH-1015 Lausanne
Switzerland

Contact

p : +41 21 693 27 47
f : +41 21 693 62 45
e : info@fib-international.org
w : www.fib-international.org

Follow fib

Subscribe our newsletter

News

Follow us on
           

Join the fib

Join the fib